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Stochastic realization approach to the efficient
simulation of phase screens

Alessandro Beghi,1 Angelo Cenedese,2 and Andrea Masiero1,*
1Dipartimento di Ingegneria dell’Informazione, Università di Padova, via Gradenigo 6/B, 35131 Padova, Italy

2Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università di Padova, Stradella San Nicola 3, 36100
Vicenza, Italy

*Corresponding author: masiero@dei.unipd.it

Received June 20, 2007; revised October 7, 2007; accepted November 5, 2007;
posted November 27, 2007 (Doc. ID 84301); published January 31, 2008

The phase screen method is a well-established approach to take into account the effects of atmospheric turbu-
lence in astronomical seeing. This is of key importance in designing adaptive optics for new-generation tele-
scopes, in particular in view of applications such as exoplanet detection or long-exposure spectroscopy. We
present an innovative approach to simulate turbulent phase that is based on stochastic realization theory. The
method shows appealing properties in terms of both accuracy in reconstructing the structure function and com-
pactness of the representation. © 2008 Optical Society of America

OCIS codes: 010.1330, 350.5030.
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. INTRODUCTION
he introduction of computer control and in particular
he application of modern control techniques to adaptive
nd active optics have significantly advanced the design
f multiple mirror telescopes, opening the pathway to the
onstruction of the several-meter-diameter Very Large
elescope (VLT [1]) and the next-generation telescopes
uch as those described in [2,3]. Adaptive optics (AO) are
sed to overcome the resolution limitation caused by at-
ospheric turbulence by compensating for factors that af-

ect the image at fast timescales (1/100 s or even less).
uch factors are not easily corrected with primary mir-
ors, so that AO have been developed for small corrective
irrors and recently for secondary mirrors.
As is nowadays common practice in control engineer-

ng, the design of AO control systems is performed by re-
orting to computer-aided control system design (CACSD)
ools. In particular, simulations are required to assess the
ontrol system performance, where it is crucial to be able
o reproduce the main disturbances affecting the system,
uch as the wavefront distortion introduced by atmo-
pheric turbulence.

Modeling of atmospheric turbulence is not an easy
ask, since it is a nonlinear, chaotic process. Turbulent
uctuations in the wind velocities in the upper atmo-
phere mix layers of differing temperatures, densities,
nd water vapor content. As a consequence, the refraction
ndex of each level of the atmosphere fluctuates and the
avefront incident on the telescope along an optical path

hat encounters these fluctuations has spatial and tempo-
al variations in phase and amplitude. Across the diam-
ter of a large telescope, the phase errors are of the order
f a few micrometers and dominate the degradation of
patial resolution.

A possible way to describe turbulence in the atmo-
1084-7529/08/020515-11/$15.00 © 2
phere is provided by the Kolmogorov theory [4–6], which
s based on a statistical description of the refractive index,
emperature, and velocity of the atmosphere. Kolmogorov
ntroduced the concept of inner and outer scales: The
uter scale is the largest-sized scale of the turbulent
tructure and is related to the size of the structure that
nitiates the turbulence. The inner scale is the smallest
cale where turbulent energy starts to dissipate due to
iscous friction. Wind velocity fluctuations and the motion
f turbulent structures are considered to be approxi-
ately locally homogeneous and isotropic.
The spectrum of the refraction index is well modeled by

olmogorov theory only in a limited range of frequencies
the so-called inertial range, which is the spatial range
etween inner and outer scales), and when there is the
eed to extend predictions beyond this regime, the Von
arman spectrum is preferred, which introduces a char-
cteristic parameter called the outer scale of spatial co-
erence L0, leading to attenuation of the phase spectrum
t low frequencies. This model tends to the Kolmogorov
odel when L0 tends to infinity. Hereafter we use “outer

cale” to indicate the outer scale of the spatial coherence
0.
From a computational point of view, atmospheric tur-

ulence is often simulated by means of the so-called phase
creen method. Pictorially, the phase screen is a randomly
nhomogeneous thin layer placed along the path of propa-
ation of a wave that affects the wavefront with a phase
erturbation. In doing so, the phase screen introduces a
lanar perturbation on a horizontal plane, and along the
ertical dimension the turbulence effect is modeled
hrough the insertion of a number of screens, each con-
ributing to the overall phase perturbation [7]. In this pa-
er we address the problem of simulating such distorted
avefronts, in particular when the generation of atmo-
008 Optical Society of America
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pheric phase screens for very long exposures is required.
n innovative approach to simulate turbulent phases is
resented, based on the stochastic realization theory,
hich allows us to take into account the turbulence sta-

istics to extend an existing phase screen in time. The
ethod is consistent with recently presented techniques

8] and shows appealing properties in terms of accuracy
nd compactness of the representation.

. PROBLEM STATEMENT
he basic question is how to choose the properties of the
hase screen so that it accurately models the atmosphere.
The spatial statistical characteristics of the turbulent

hase � are generally described by means of the structure
unction D�, which measures the averaged difference be-
ween the phase at two points at locations r1 and r2 of the
avefront, which are separated by a distance r on the ap-
rture plane (Fig. 1),

D��r� = ����r1� − ��r2��2�.

he structure function is related to the covariance func-
ion of �, C��r�= ���r1� ,��r2��, as

D��r� = 2���
2 − C��r��, �1�

here ��
2 is the phase variance.

According to the Von Karman theory, the phase struc-
ure function evaluated at distance r is the following [9]:

D��r� = �L0

r0
�5/3

c���5/6�

21/6 − �2�r

L0
�5/6

K5/6�2�r

L0
�	 ,

here K . �·� is the MacDonald function (modified Bessel
unction of the third type), � is the gamma function, L0 is
he outer scale, r0 is a characteristic parameter called the
ried parameter [10], and the constant c is

c =
21/6��11/6�

�8/3 �24

5
��6/5�	5/6

.

From relation (1) between the structure function and
he covariance, the spatial covariance of the phase be-
ween two points at distance r is

C��r� = �L0

r0
�5/3 c

2�2�r

L0
�5/6

K5/6�2�r

L0
� . �2�

e denote with ��u ,v , t� a discrete square phase screen of
ize m�m pixels, being 1�u ,v�m, as seen by the tele-
cope pupil at time t; and �u ,v� are the Cartesian coordi-
ates of a point on the square that inscribes the aperture
lane. Without loss of generality, we assume that the

ig. 1. Two points r and r at distance r on the aperture plane.
1 2
hysical dimension of each pixel is ps�ps
m2� (therefore
he phase screen has a physical size of D=mps in meters),
lthough the procedure described can be easily extended
o the general case of rectangular pixels.

In order to describe its temporal characteristics, the
urbulence is generally modeled as the superposition of a
nite number l of thin layers: The ith layer models the at-
osphere from hi−1 to hi meters high, where hl� ¯ �hi
hi−1� ¯ �h0=0. Let �i�u ,v , t� be the value of the ith

ayer at point �u ,v� on the telescope aperture and at time
. Then the total turbulent phase at �u ,v� and at time t is

��u,v,t� = �
i=1

l

	i�i�u,v,t�, �3�

here 	i are suitable coefficients. Without loss of general-
ty, we assume that �i=1

l 	i
2=1.

The layers are assumed to be stationary and character-
zed by the same spatial characteristics; i.e., all the layers
re spatially described by the same structure function.
he generalization to the case of layers with different spa-

ial characteristics, e.g., different Fried parameters, is im-
ediate. Furthermore, the layers are assumed to be zero
ean and independent; hence

E
�i�u,v,t��j�u�,v�,t��� = 0, 1 � i � l, 1 � j � l,

j � i, 1 � u, v � m,

1 � u�, v� � m.

A commonly agreed-upon assumption considers that
ach layer translates in front of the telescope pupil with
onstant velocity vi (Taylor approximation [11]); thus

�i�u,v,t + kT� = �i�u − vi,ukT,v − vi,vkT,t�, i = 1, . . . ,l,

�4�

here vi,u and vi,v are the projections of the velocity vector
i along the direction respectively parallel and orthogonal
o the wind, while kT is a delay multiple of the sampling
eriod T.
Since all layers have the same statistical characteriza-

ion, hereafter we assume l=1; thus ��u ,v , t�=�1�u ,v , t�:
he generalization to the case l
1 follows immediately

rom Eq. (3), thanks to the independence of the layers.
ithout loss of generality, we assume that the layer

ranslates along the direction parallel to the wind, that is,
i,u= �vi� and vi,v=0. Under this hypothesis the turbulent
hase simulation during very long exposures is obtained
y generating new columns of � according to the atmo-
pheric turbulence statistics.

In this framework, the phase screen � is treated as a
ealization of an m-dimensional stochastic process �

�t : t�N� that we assume to be wide-sense stationary.
his implies that the mean function m��t�=m��t+��, ∀�
N is constant (m�=0, without loss of generality) and

hat the correlation function, which with an abuse of no-
ation here we indicate with C �· , · �, depends only on the
�
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ifference between the evaluation points C��t1 , t2�=C��t1
� , t2+��=C��t1− t2 ,0�, ∀��N. Therefore, we consider the

th column of �, �t (that is, �t=��t , : ,0�) as the value at
ime t of the stochastic process in the realization �. Tak-
ng advantage of the stationarity of the process, hereafter
e will write the correlation function as an univariate

unction C��·�.

. STOCHASTIC REALIZATION
. Stochastic Realization Algorithm
he stochastic process � can be represented as the output
of a linear dynamic system in state space form, that is,

t=�t:

�xt+1 = Axt + Ket,

yt = Cxt + et
� , �5�

here et is a zero-mean white-noise process with covari-
nce matrix �e=E
etet

T�=R�Rm�m. In Eq. (5), the state x
nd the output y vectors have dimensions of n and m, re-
pectively, and A�Rn�n, K�Rn�m, and C�Rm�n.

The problem of finding a set of parameters 
A ,C ,K ,R�
uch that the covariances of the process yt match a de-
ired covariance matrix �y is called a (partial) stochastic
ealization problem [12–19]. Actually, in this section we
ill present a particular case of the approach suggested

n [14].
Moreover, in the specific phase screen case, the covari-

nce of the stochastic process � is uniquely determined
y the theoretical covariances given by Eq. (2).
We define 
i as the expected value of the product be-

ween two output samples yt+i and yt, 
i=E
yt+iyt
T�, i

0, . . . ,2�−1, where � is a design parameter in the proce-
ure. From the structure of model (5), the calculation of
he square matrices 

i� gives the following:

�

1 = CG


2 = CAG

]


2�−1 = CA2�−2G
� , �6�

here G=A�CT+KR and �=E
xtxt
T�.

Exploiting the Taylor approximation makes it possible
o compute 

i�. Letting � be the distance traveled in a
ample period (proportional to the translation velocity),
he values of 
i are simply obtained from the covariance
unction of Eq. (2), recalling the zero-mean assumption
or �t. In other words,


i = E
yt+iyt
T� = E
��t+i − m����t − m��T� = C��i��.

The 
i are used to construct the following Hankel ma-
rix (of size �m��m):

H ª �

1 
2 ¯ 
�


2 
3 ¯ 
�+1

] ] � ]


� 
�+1 . . . 
2�−1

� �7�
=�
CG CAG ¯ CA�−1G

CAG CA2G ¯ CA�G

] ] � ]

CA�−1G CA�G ¯ CA2�−2G
� �8�

=�
C

CA

]

CA�−1
�
G AG . . . A�−1G�. �9�

Let T be the following Toeplitz matrix:

T = �

0 
1 
2 ¯ 
�−1


1
T 
0 
1 � 
�−2


2
T 
1

T 
0 � 
�−3

] � � � ]


�−1
T 
�−2

T 
�−3
T

¯ 
0

� ,

nd let L be a Cholesky factor of T; that is, L is a lower
riangular matrix such that T=LLT. Then we define the
ormalized Hankel matrix as follows:

Ĥ ª L−1HL−T;

ence

H = LĤLT. �10�

onversely, the Ĥ matrix can be factorized according to
he singular-value decomposition (SVD) algorithm:

Ĥ = USVT = US1/2S1/2VT, �11�

here U, V are unitary matrices and S is the diagonal
atrix whose elements are the singular values of Ĥ.
In a practical application of the method, most of the

ingular values of Ĥ will be close to zero (Fig. 2); therefore
e can use the factorization of Ĥ even as a dimensional

ig. 2. Plot of the singular values of the stochastic realization
odel. In this case we set the parameter values to �=10, m=64;

ence the size of the A matrix before the reduction step (and the
umber of the singular values) is �m=640.
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eduction step considering only the first n̄ singular values
nd setting the remaining ones to 0:

Ĥ � Un̄Sn̄Vn̄
T = Un̄Sn̄

1/2Sn̄
1/2Vn̄

T, �12�

here

�Un̄ = U�:,1:n̄�

Sn̄ = S�1:n̄,1:n̄�

Vn̄ = V�:,1:n̄�
� .

n this case, the following approximate relation stands:

Ĥ � Un̄Sn̄Vn̄
T. �13�

rom Eqs. (10) and (13) and since the factorization in Eq.
9) still holds, we can compute C and G as follows:

�C � �1�H�L−TVn̄Sn̄
−1/2

G � ��1�HT�L−TUn̄Sn̄
−1/2�T� , �14�

here the �1�·� operator selects the first m rows of a ma-
rix.

Furthermore let ��·� be the shift operator that, when
pplied to the Hankel matrix H, yields

��H� = �

2 
3 . . . 
�+1


3 
4 . . . 
�+2

] ] � ]


�+1 
�+2 . . . 
2�

� .

rom Eqs. (10) and (13) and

�
C

CA

]

CA�−1
�A
G AG . . . A�−1G� = ��H�,

e can compute A in the following way:

A � Sn̄
−1/2Un̄

TL−1��H�L−TVn̄Sn̄
−1/2. �15�

From the system equations [see Eq. (5)], it is possible to
rite the time evolution of �t=E
xtxt

T�:

�t+1 = A�tA
T + �G − A�tC

T�R−1�G − A�tC
T�T,

nd the steady-state covariance matrix � is obtained by
olving the following algebraic Riccati equation (ARE):

= A�AT + �G − A�CT��
0 − C�CT�−1�GT − C�AT�, �16�

here the input noise covariance R is computed explicitly
rom 
0−C�CT. Let us assume that the ARE admits at
east a positive semidefinite solution: The problem of the
xistence of such a solution will be considered in the fol-
owing paragraphs. Also notice that the ARE may have

ultiple positive semidefinite solutions. However, there
lways exists two special positive semidefinite solutions
− and �+ such that �−��s��+, where �s is a generic
ositive semidefinite solution. Here we choose �=�−,
hich corresponds to considering the casual factorization
f the spectrum associated to the system.
Finally, the input gain K in the state equation is given
y the Kalman gain: K= �G−A�CT�R−1.
For a generic triplet 
A ,C ,G�, the Riccati equation, Eq.

16), may not have a solution. To explain when this may
ccur, let us first consider the finite covariance sequence:



̄0,
̄1,
̄2, . . . ,
̄2�−1�, �17�

here the matrices in the sequence are defined as follows:

�

̄0 ª 
0


̄1 ª CG � 
1


̄2 ª CAG � 
2

]


̄2�−1 ª CA2�−2G � 
2�−1

� .

hen let us consider the infinite sequence



̄0,
̄1,
̄2, . . . ,
̄2�−1,
̄2�, . . . � �18�

f m�m matrices, obtained by defining


̄i ª CAi−1G, ∀ i � 2�.

he sequence Eq. (18) is called a minimal rational exten-
ion of the finite sequence in Eq. (17) [16]. Notice that the
inimal rational extension of Eq. (17) is uniquely deter-
ined by 
A ,C ,G�. The matrices of the sequence in Eq.

18) are supposed to be the covariances of the output pro-
ess in the dynamic system of Eq. (5); however, for a ge-
eric triplet 
A ,C ,G� satisfying 
̄iªCAi−1G, 1� i�2�−1,
q. (18) is not a covariance sequence. When Eq. (18) is a
ovariance sequence, it is called a positive sequence.

The following proposition holds:
Proposition 1. Let 
i=C��i��, ∀i and let A, C, G be

omputed as in Eqs. (14) and (15). Then, there is an inte-
er �1�2 such that, for ���1 then 

̄0 , 
̄1 , 
̄2 , . . . � is a
ositive sequence.
The proof of Proposition 1 follows immediately from

heorem 5.3 in [14] after introducing the hypotheses that
old here.
We stress the fact that the positivity of the covariance

equence is a sufficient condition for the solvability of the
iccati equation, Eq. (16): Hence making � sufficiently

arge assures the existence of a positive semidefinite so-
ution of the ARE.

The dynamic model in Eq. (5) can be now used to syn-
hesize new realizations of the stochastic process � (or to
xtend in time an existing one). Indeed, given an initial
tate x0, the synthesis of new values of y is obtained by
imply generating suitable samples of the input et and up-
ating the state and output equations in Eq. (5). In accor-
ance with Roddier [20], we assume that the turbulent
hase has Gaussian statistics: Thus we generate et, for all
, taking independent samples from N�0,R�.
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Let us consider the state update equation

xt+1 = Axt + Ket. �19�

rom Theorem 13.0.1 in Meyn and Tweedie [21], what-
ver the initial condition x0 is, the state probability will
onverge to the invariant density ��·�, uniquely associ-
ted to the Markov chain described by Eq. (19). However,
e can sample x0 directly from �: In this way pxt

�x̄�
��x̄�, t�0, where pxt

�·� is the state density at time t.
hus, at least theoretically, by sampling x0 from �, we can
irectly sample from the dynamic system at steady state.

. Alternative Stochastic Realization Algorithm
n Subsection 3.A we considered a general stochastic re-
lization algorithm to compute the parameters
A ,C ,K ,R� of the dynamic model in Eq. (5). Taking into
ccount our particular application, we want to reduce, as
uch as possible, the on-line computational complexity

off-line complexity is not a relevant issue.)
Similar to what is detailed in Subsection 3.A, we fac-

orize Ĥ using the SVD; however, in this case we consider
he unnormalized Hankel matrix, i.e., L=I, Ĥ=H, and

Ĥ = H = USVT = US1/2S1/2VT. �20�

hen the steps to follow for the identification of the pa-
ameters of Eq. (5) are the same as in the previous sec-
ion.

For a fixed state dimension n̄, this procedure does not
ssure the solvability of the ARE, Eq. (16). However,
hen the ARE is solvable, it usually allows us to achieve
etter performances than those of the previous section;
.e., it assures a better approximation of the theoretical
ovariances. Equivalently, one can obtain the same per-
ormances of the algorithm of the previous section but
ith a smaller n̄, hence reducing the on-line computa-

ional complexity of the algorithm.
However, since in this case the Riccati equation may

ave no solution, it may be necessary to make a different
hoice for the state dimension n̄ and to test again the solv-
bility of the ARE. Hence, in this case, only the off-line
omplexity of the algorithm is increased.

In Fig. 3 we report a comparison between the results on
he replication of the theoretical structure function, ob-
ained with the method proposed in Subsection 3.A, and
hose of this section. For both methods we set n̄=60. As
lready claimed, when the ARE is solvable the method
roposed in this section achieves better performances
han those of Subsection 3.A. For this reason in Section 6
e report the results obtained with the method described

n this section.

. ASSÉMAT et al. METHOD
o validate the method and assess the performance of the
rocedure adopted, a recent work by Assémat et al. [8] is
hosen as a reference. In [8] the problem of extending in
ime a phase screen of m�m pixels is considered. This,
gain, translates into the problem of adding new columns
o the phase screen matrix. The solution proposed starts
rom N “old” phase values piled to form a vector z (of size
m) and a random input vector � whose components are
ndependent Gaussian signals with zero mean and uni-
ary covariance, which are linearly combined in a dy-
amic relation to form the “new” phase values y:

y = Ãz + B̃�, �21�

here Ã and B̃ are matrices of size m�Nm and m�m,
espectively.

To obtain the system matrices Ã and B̃, Assémat et al.
roceed by taking the covariances

�yz ª E
yzT� = ÃE
zzT�, �22�

�y ª E
yyT� = ÃE
zzT�ÃT + B̃B̃T. �23�

rom Eq. (22), with �zªE
zzT�,

Ã = �yz�z
−1,

hile from Eq. (23)

B̃B̃T = � − Ã� ÃT,

ig. 3. Phase structure function along the wind direction. A
omparison of the theoretical values (dashed curve) and those ob-
ained with (i) the dynamic model identified with the procedure
n Subsection 3.A (dashed–dotted curve) and (ii) the dynamic

odel identified with the procedure in Subsection 3.B (solid
urve). The values of the parameters are set to L0=2 m, r0
0.2 m, D=8 m, ps=0.125 m.
y z
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nd hence the B̃ matrix can be obtained, for example, by
esorting to the SVD algorithm.

This approach can be revisited as a particular case of
he stochastic realization problem. Let � be equal to N. By
ssuming the notation of Section 3, �t [y in Eq. (21)] is
onsidered as the output yt of the following dynamic
odel, and the state xt is obtained by piling the vectors

�t ,�t−1, . . . ,�t−�+1�:

�xt+1 = Axt + Bwt

yt = Cxt
� , �24�

here wt is a white-noise process with unitary covariance.
ecause m is the dimension of the output and n=�m the
tate dimension, the process matrices A�Rn�n, B
Rn�m, and C�Rm�n take the form

A = � Ã1 Ã2

I��−1�m 0 	 = � Ã

I��−1�m0	 ,

B = �
B̃

0

]

0
� ,

C = 
Im 0 . . . 0�,

oting that, for the sake of simplicity, the first m rows of
can be compacted in the m�n matrix Ã, and B is par-

itioned accordingly (with B̃ of size m�m).
Let the output covariances 
i be defined as in Eq. (6);

hen the state covariance matrix � is

� = �

0 
1 . . . 
�−1


1 
0 . . . 
�−2

] ] � ]


�−1 
�−2 . . . 
0

� .

s suggested in Eq. (8), Ã can easily be computed via least
quares:

Ã = 

1 
2 . . . 
���−1.

oreover, since the process is assumed to be stationary,
ntroducing matrix Qª B̃B̃T results in

� = A�AT + BBT = � Ã

I��−1�m0	��ÃT
I��−1�m

0 	 + �Q 0

0 0	 .

hus Q=
0− Ã�ÃT; B̃ (hence, B) can be computed from Q,
or example, via SVD.

The synthesis process is substantially the same as that
reviously described in Section 3.

. ZERNIKE REPRESENTATION OF
URBULENCE

n order to compare the performances of the models in
ections 3 and 4, we introduce here the Zernike represen-
ation of turbulence, which provides a low-order represen-
ation of the signal. Furthermore, the atmospheric turbu-
ence has been statistically characterized, exploiting the
ernike representation.
One of the tests that will be used in Section 6 to com-

are phase screen simulation methods is the ability to re-
roduce the theoretical variances of the Zernike coeffi-
ients.

In this section we briefly introduce Zernike polynomials
nd recall some results on the statistical characteristics of
heir coefficients in the atmospheric turbulence frame-
ork.
Since the Zernike polynomials provide a spatial repre-

entation of the turbulence, in this section we will con-
ider time as fixed at a constant value t̄, and we will omit
from the notation.
Zernike polynomials. Zernike polynomials are com-
only used to represent signals defined inside a circle.
his makes them particularly well suited to represent the

urbulent phase on the aperture plane.
Let r�R2 and 	 be its phase, i.e., r= �r�exp�j	�. Then the

eneric Zernike polynomial Zi, i�0, is defined on R2 as
ollows:

Zi�r� = �
�n + 1Rn

m�r��2 cos�m	� if m � 0,i even

�n + 1Rn
m�r��2 sin�m	� if m � 0,i odd

�n + 1Rn
m�r� if m = 0

� ,

here

Rn
m�r� = �

k=0

�n−m�/2 �− 1�k�n − k�!

k!�n + m

2
− k�!�n − m

2
− k�!

�r�n−2k

nd n, m are two integers uniquely identified by i. Notice
hat n, m defined in this paragraph have a different
eaning from those of n, m used in the other sections.
he integer n, with n�0, is called the level of the polyno-
ial. We use here the Noll convention [22]; however, some

uthors use different conventions for the relation n, m,
nd i. Some examples of Zernike polynomials are pro-
ided by [22].

Using the Zernike polynomials as a spatial basis, the
ffect of the turbulence at point r on the aperture plane
an be written as follows:

��r� = �
i=0

+�

aiZi� r

D/2�, �r� � D/2,

here D is the telescope aperture diameter.
Since the Zernike polynomials are orthogonal in the

onsidered region, ai, i�0 can be computed from the in-
er product of the ith Zernike polynomial with the cur-
ent turbulent phase on the aperture plane:

ai =�
R2

�� r

D/2�Zi� r

D/2���r�dr.

Finally, we report the (second-order) statistical charac-
erization of the Zernike coefficients: The turbulent phase
as zero mean; hence the coefficient ai, i�0 has zero
ean too; furthermore,
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E
aiai�� =

⎩
⎪
⎨
⎪
⎧=

2��11/6�

�3/2 �24

5
��6

5�	5/6�D

r0
�5/3

��n + 1��n� + 1��− 1��n+n�−2m�/2

��mm��
h=0

� �− 1�h

h! ���Df0�2h+n+n�−5/3�
���h + 1 +

n + n�

2
,h + 2 +

n + n�

2
,h + 1 +

n + n�

2
,
5

6
− h −

n + n�

2

3 + h + n + n�,2 + h + n,2 + h + n�
�

+ ��Df0�2h���
n + n�

2
− h −

5

6
,h +

7

3
,h +

17

6
,k +

11

6

n + n�

2
+ h +

23

6
,
n − n�

2
+ h +

17

6
,
n� − n

2
+ h +

17

6
��

if m = m�,m � 0,m� � 0,i + i� even;or m = m� = 0

=0 otherwise ⎭
⎪
⎬
⎪
⎫

. �25�
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t
t
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[
m

F
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c
(
c
=

he above expression is derived in [23]. Other similar ex-
ressions were computed also by Takato and Yamaguchi
n [24] and by Winker in [25].

. SIMULATIONS
e report here some examples of the application of the

roposed method, comparing the results with those ob-
ained using the method of [8]. The results of the stochas-
ic realization approach that we provide are obtained
rom simulations using the simplified procedure of Sub-
ection 3.B. However the procedure of Subsection 3.A
ields similar results.

We have to stress that the simulated phase screens
ave to reconstruct with a high level of accuracy the the-
retical statistics of the turbulence in order to be of use,
or instance, in the validation of the AO control procedure.
hus, we compare the methods to generate long-exposure
hase screens with respect to their capability of reproduc-
ng both the structure function and the Zernike coefficient
ariances.

As far as the first aspect is concerned, we consider the
symptotic structure function. As explained in [21], a
nique invariant density � is associated with the system

n Eq. (5), characterized by its parameters A, C, K, and R.
imilarly, a unique invariant density is associated also
ith the dynamic system in Eq. (24). We assume to start

imulating the turbulence at t= t0. Then asymptotically
or t→�, the output density pyt

�·� of the system in Eq. (5)
onverges to the invariant density �y. Hence, we first
ompute the invariant density �y, and then we use it to
valuate the corresponding structure function.

In order to provide a complete comparison between the
wo methods, we consider also the variances of the
ernike coefficients: In this case we compare the theoret-

cal variances given by Eq. (25) with the sample variances
stimated by sequences of 15,000 consecutive phase
creens (with wind velocity set to 4 pixels/frame). In this
ase the results are not asymptotic, and thus they are less
ccurate.
Since by hypothesis the structure function is spatially

sotropic and by construction both the method of [8] and
he stochastic realization approach preserve the original
tatistics along the direction orthogonal to the wind (see
ig. 4), most of the following examples on structure func-

ion reconstruction will show the results obtained along
he direction parallel to the wind to verify the isotropic
roperty of the structure function.
Following the guidelines for the choice of � suggested in

8], in the examples reported we set 2���4 for the
ethod of [8]. Accordingly, the corresponding dimension

ig. 4. Phase structure function along the direction orthogonal
o the wind. A comparison of the theoretical values (dashed
urve) and those obtained with (i) the dynamic model of Section 3
solid curve) and (ii) the method of Assémat et al. (dashed–dotted
urve). The values of the parameters are set to L0=16 m, r0
8 m, D=8 m, p =0.125 m.
s
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f the state is between 128 and 256. Instead, when using
he procedure of Subsection 3.B, we set �=10, and the
tate dimension is n̄=60.

First, we propose three examples with parameters
aken from [8]. In Figs. 4–6 we report, respectively, the
tructure function evaluated along the direction orthogo-
al to the wind, the structure function evaluated along
he wind direction, and the variances of the Zernike coef-
cients obtained by setting the values of the parameters
o L0=16 m, r0=8 m, D=8 m, ps=0.125 m, and N=2.
hen Figs. 7–10 show the structure function along the
ind direction and the variances of the Zernike coeffi-

ients obtained by setting first L0=16 m, r0=8 m, D

ig. 5. Phase structure function along the wind direction. A
omparison of the theoretical values (dashed curve) and those ob-
ained with (i) the dynamic model of Section 3 (solid curve) and
ii) the method of Assémat et al. (dashed–dotted curve). The val-
es of the parameters are set to L0=16 m, r0=8 m, D=8 m, ps
0.125 m.

ig. 6. Variances of the Zernike coefficients. A comparison of the
heoretical values (dashed curve) and those obtained with (i) the
ynamic model of Section 3 (solid curve) and (ii) the method of
ssémat et al. (dashed–dotted curve). The values of the param-
ters are set to L =16 m, r =8 m, D=8 m, p =0.125 m.
0 0 s
8 m, ps=0.125 m, and N=2 and then L0=64 m, r0=4 m,
=4 m, ps=0.0625 m, and N=4.
To conclude, in the last two examples we set the values

f the parameters to L0=3.5 m, D=8 m, r0=0.3 m, ps
0.125 m, and N=3 in Fig. 11, and to L0=1.6 m, D=8 m,

0=0.15 m, ps=0.125 m, and N=3 in Fig. 12.
Notice that in the right plot of Figs. 5, 7, and 9, the er-

or in the reconstruction of the structure function for the
ethod of Assémat et al. appears to be diverging. How-

ver, this is not the case: Indeed, under the assumption of
table models that correctly represent the phase variance,
he error vanishes when it is evaluated at a large dis-
ance.

ig. 7. Phase structure function along the wind direction. A
omparison of the theoretical values (dashed curve) and those ob-
ained with (i) the dynamic model of Section 3 (solid curve) and
ii) the method of Assémat et al. (dashed–dotted curve). The val-
es of the parameters are set to L0=64 m, r0=8 m, D=8 m, ps
0.125 m.

ig. 8. Variances of the Zernike coefficients. A comparison of the
heoretical values (dashed curve) and those obtained with (i) the
ynamic model of Section 3 (solid curve) and (ii) the method of
ssémat et al. (dashed–dotted curve). The values of the param-
ters are set to L =64 m, r =8 m, D=8 m, p =0.125 m.
0 0 s
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. DISCUSSION
o begin with, we stress the fact that the methods de-
cribed in the previous sections can be successfully em-
loyed if the (wide-sense) stationarity assumption on the
rocess � stands. Furthermore, the synthesis procedure
equires the A matrix in the identified model to be asymp-
otically stable: The procedure of Subsection 3.A ensures
t, whereas this is generally not true for that in [8] (Sec-
ion 4). When the stationarity assumption holds, it is
imple to compute the asymptotic characteristics of both
q. 5 and the model in Eq. (24) proposed in [8].
Two more observations are in order. First, the number

f operations needed to compute a new column of the

ig. 9. Phase structure function along the wind direction. A
omparison of the theoretical values (dashed curve) and those ob-
ained with (i) the dynamic model of Section 3 (solid curve) and
ii) the method of Assémat et al. (dashed–dotted curve). The val-
es of the parameters are set to L0=64 m, r0=4 m, D=4 m, ps
0.0625 m.

ig. 10. Variances of the Zernike coefficients. A comparison of
he theoretical values (dashed curve) and those obtained with (i)
he dynamic model of Section 3 (solid curve) and (ii) the method
f Assémat et al. (dashed–dotted curve). The values of the param-
ters are set to L =64 m, r =4 m, D=4 m, p =0.0625 m.
0 0 s
hase screen is equal to that required for sampling the
ew white noise et and for updating the state xt and the
utput yt. Since the dimensions of 
A ,C ,K ,R�, the matri-
es and vectors involved in the computations of xt and et,
epend on the size n of the state vector, it is understand-
ble how it is critical to keep the state dimension as small
s possible. To be more precise, let ns and na be, respec-
ively, the state dimensions for the procedures of Subsec-
ion 3.B (or 3.A) and Section 4, then the computational
omplexity is proportional to, respectively, �m2+ns

2

2nsm+ns+2m� and �m2+mna+2m�, where we have as-
umed that each elementary operation has the same com-

ig. 11. Phase structure function along the wind direction. A
omparison of the theoretical values (dashed curve) and those ob-
ained with (i) the dynamic model of Section 3 (solid curve) and
ii) the method of Assémat et al. (dashed–dotted curve). The val-
es of the parameters are set to L0=3.5 m, r0=0.3 m, D=8 m,
s=0.125 m.

ig. 12. Phase structure function along the wind direction. A
omparison of the theoretical values (dashed curve) and those ob-
ained with (i) the dynamic model of Section 3 (solid curve) and
ii) the method of Assémat et al. (dashed–dotted curve). The val-
es of the parameters are set to L0=1.6 m, r0=0.15 m, D=8 m,
=0.125 m.
s
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lexity (even the generation of a random number). Since
a=Nm and reasonably ns�m, then the stochastic real-

zation approach requires approximatively 4/ �N+1� times
he number of operations needed by the method of Assé-
at et al. Thus the two algorithms have similar compu-

ational complexities for small values of N. To be more
recise, the method of Assémat et al. is computationally
onvenient for N= 
1,2� (short memory system), while the
tochastic realization approach becomes convenient for N
arger than 3 (long memory system). Similar consider-
tions can be made also for the memory requirement of
he two algorithms.

Second, the parameter � in both models [Eqs. (5) and
24)] corresponds to the number of covariances used in the
odel identification step: Large values of � lead to better

pproximations of the dynamic behavior of the process.
herefore, it would be sensible to choose a large value of
.

As far as the comparison between the stochastic real-
zation approach (Section 3) and the original approach in
8] (Section 4) is concerned, we observe that the state vec-
or dimension in the model of Eq. (24) is n=�m: The state
imension grows linearly with �, and therefore there is a
rade-off between the two issues mentioned before. For
he state vector to show reasonable dimension, the � pa-
ameter has to be kept small.

Conversely, one main advantage of the approach out-
ined in Section 3 is that we can choose n and � separately
nd, thanks to the dimension reduction step in the SVD
actorization of H in Eq. (11), the resulting state dimen-
ion n̄ will be smaller than �m.

The above considerations suggest that the method de-
cribed in Section 3 provides an overall improvement over
he previous method proposed in [8]. This is confirmed by
he results obtained in the examples reported in Section
. In these examples we used a much smaller state for the
ethod of Section 3 with respect to that of [8]. On one

and, this makes the running time of the algorithm (and
ts memory requirements) comparable with that of [8]. On
he other hand, it is evident how the output of the pro-
osed algorithm allows us to obtain better results, espe-
ially in terms of estimation of the structure function,
hanks to the larger value of �.

Since unfortunately in practical applications the sta-
ionarity hypothesis is not typically satisfied, it is worth
onsidering the case of nonstationary turbulence simula-
ion. Similar to the model of Assémat et al., the method
escribed in Section 3 can also handle this case. When the
onstationarity is given by abrupt changes in r0, the sys-
em parameters can be easily updated. On the other
and, if the system is affected by a change in L0 instead of

n r0, the nonstationarity can still be handled, however
he model matrices have to be recomputed following the
rocedure described in Section 3.

. CONCLUSIONS
n this paper we have presented what we believe to be a
ew framework to develop a dynamic model used to ex-
end the phase screen for astronomical applications.

On the one hand, we have shown how the stochastic re-
lization approach is consistent with previous work, in
hat the model by Assémat et al. is reinterpreted in the
eneral framework proposed.

On the other hand, the model produced using the sto-
hastic realization shows appealing properties of com-
actness, since the state dimension results are much
maller than the correspondent one in [8], and at the
ame time provides better results in terms of the recon-
tructed structure function.
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